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Forced turbulence combined with the effect of rotation and shear flow is studied. In a previous paper �N.
Leprovost and E. J. Kim, Phys. Rev. E 78, 016301 �2008��, we considered the case where the shear and the
rotation are perpendicular. Here, we consider the complementary case of parallel rotation and shear, elucidating
how rotation and flow shear influence the generation of shear flow �e.g., the direction of energy cascade�,
turbulence level, transport of particles, and momentum. We show that turbulence amplitude and transport are
always quenched due to strong shear ��=�ky

2 /A�1, where A is the shearing rate, � is the molecular viscosity,
and ky is a characteristic wave number of small-scale turbulence�, with stronger reduction in the direction of
the shear than those in the perpendicular directions. In contrast with the case where rotation and shear are
perpendicular, we found that rotation affects turbulence amplitude only for very rapid rotation ���A� where
it reduces slightly the anisotropy due to shear flow. Also, concerning the transport properties of turbulence, we
find that rotation affects only the transport of particle and only for rapid rotation, leading to an almost isotropic
transport �whereas, in the case of perpendicular rotation and shear, rotation favors isotropic transport even for
slow rotation�. Furthermore, the interaction between the shear and the rotation is shown to give rise to
nondiffusive flux of angular momentum �� effect�, even in the absence of external sources of anisotropy, which
can provide a mechanism for the creation of shearing structures in astrophysical and geophysical systems.
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I. INTRODUCTION

Large-scale shear flows are often observed in rotating as-
trophysical and geophysical systems. Shear and rotation have
a huge impact on the properties of this system, such as en-
ergy transfer or mixing. From a physical point of view, the
main effect of shear flow is to reduce turbulence level as well
as turbulent transport compared to their values without shear.
This is basically because shear advects turbulent eddies dif-
ferentially, elongating and distorting their shapes, thereby
rapidly generating small scales which are ultimately dis-
rupted by molecular dissipation on small scales �see Fig. 1�.
That is, flow shear facilitates the cascade of various quanti-
ties such as energy or mean square scalar density to small
scales �i.e., direct cascade� in the system, enhancing their
dissipation rate. As a result, turbulence level as well as tur-
bulent transport of these quantities can be significantly re-
duced compared to the case without shear. Another important
consequence of shearing is to induce anisotropic transport
and turbulent level since flow shear directly influences the
component parallel to itself �i.e., x component in Fig. 1� via
elongation while only indirectly the other two components
�i.e., y and z components in Fig. 1� through enhanced dissi-
pation. Rotation can also reduce transport in the limit of
rapid rotation �similarly to flow shear�, but through a physi-
cal mechanism that is different from that of shear, namely by
phase mixing of inertial waves �1�. While both rotation and
�stable� shear flow tend to regulate turbulence, there are im-
portant differences in their effects, which should be empha-
sized. Rotation, by exciting inertial waves, tends to reduce
turbulence transport more heavily than turbulence amplitude
while shear flows reduce both of them to a similar degree.
That is, rotation �or waves� quenches the cross phase �nor-
malized flux� more than shear flow does �2,3�.

Rapid distortion theory �RDT� �4,5� was used to study the
linear response of turbulence to a mean flow with spatially

uniform gradients. The linear treatment of fluctuations by
incorporating strong flow shear was also used in the astro-
physical context by Ref. �6� by using shearing coordinates.
The generation of large-scale shear flows �the so-called zonal
flows� through a similar nonlocal interaction has been in-
tensely studied in the magnetically confined plasmas, where
turbulence quenching by shear flow is believed to be one of
the most promising mechanisms for improving plasma con-
finement �7,8�. In decaying sheared turbulence, Lee et al. �9�
have shown a surprisingly good agreement between the RDT
predictions and numerical simulations. Subsequently, theo-
retical predictions �using a quasilinear theory� for the trans-
port of passive scalar fields in two-dimensional �2D� hydro-
dynamic turbulence by Refs. �2,10� have been confirmed by
recent numerical simulations �11�. In particular, they have
shown that turbulent transport of particles can be severely
quenched inversely proportional to flow shear A while tur-

Typical distance an eddy can transport a passive scalar field

Background shearing flow

Turbulent eddy

X

y

FIG. 1. Sketch of the effect of shear on a turbulent eddy.
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bulence level is reduced as A−5/3. It is important to note that
this nonlocal interaction leading to the inverse cascade can
be successfully captured by inhomogeneous RDT theory
which permits the feedback of the nonlinear local interaction
between small scales onto the large scales via Reynolds
stress �constituting the other part of the quasilinear analysis�,
while neglecting nonlinear local interaction between small
scales for fluctuations compared to nonlocal interactions. As
must be obvious by comparing the Coriolis force with the
nonlinear advection terms, the RDT works well for suffi-
ciently strong rotation �small Rossby number� even in the
absence of shear flow. For instance, the agreement of the
RDT prediction with numerical results has been shown by
various previous authors including �12�, but mostly in decay-
ing turbulence. However, in this case, the RDT cannot accu-
rately capture the turbulence structure in the plane perpen-
dicular to the rotation axis where nonlinear local interactions
between inertial waves seem important �see, e.g., Ref. �13��.
The validity and weakness of the RDT together with the
comparison with various numerical simulation �without an
external forcing� with and/or without shear flows and strati-
fication can be found in an excellent review by Salhi and
Cambon �14,15�, to which readers are referred for more de-
tails.

In comparison, much less is understood in the case of
forced turbulence. In particular, the main interest in forced
turbulence is a long-term behavior where the dissipation, en-
hanced by shear distortion, is balanced by energy input,
thereby playing a crucial role in leading to a steady equilib-
rium state. The computational study of this long-time behav-
ior is however not only expensive but also difficult because
of the limit on numerical accuracy, as noted by Salhi and
Cambon �16�. Therefore, analytical theory by capturing
shearing effect �such as quasilinear theory with time-
dependent wave number� would be extremely useful in ob-
taining physical insights into the problem as well as guiding
future computational investigations. We note that the previ-
ous works by Kichatinov and Rudiger and collaborators
�17–21� using quasilinear theory are valid only in the limit of
weak shear. Forced sheared turbulence was proposed by
Nazarenko �22� in the context of two-dimensional near-wall
turbulence to explain the logarithmic dependence of the large
scale velocity on the distance to the wall. In that case, the
external forcing is provided by a continuous supply of vor-
ticity from intermittent coherent burst of vorticity coming
from the viscous layer. This work was later generalized to
three dimensions �23,24� with the same conclusions. In the
astrophysical context, Kim �25� has shown that in 3D forced
hydrodynamics �HD� turbulence, strong flow shear can
quench the turbulence level and transport of particles with
strong anisotropy �much weaker along the flow shear which
is directly affected by shearing� and has emphasized the dif-
ference in the turbulence level and transport, which is often
used interchangeably in literature. A similar weak anisotropic
transport was shown for momentum transport �26� in forced
3D HD turbulence. Further investigations have been per-
formed on turbulent transport in forced turbulence by incor-
porating the interaction of sheared turbulence with different
types of waves that can be excited due to magnetic fields
�3,27,28�, stratification �29�, or both magnetic fields and
stratification �30�.

The combined influence of shear flow and rotation in
forced turbulence has been considered in Ref. �31� when the
rotation and the shear are perpendicular to each other. We
found that flow shear always leads to weak turbulence with
an effectively stronger turbulence in the plane perpendicular
to shear than in the shear direction, regardless of rotation
rate. The anisotropy in turbulence amplitude is however
weaker in the rapid rotation limit ���A where � and A are
the rotation and shearing rate� than that in the weak rotation
limit ���A� since rotation favors almost-isotropic turbu-
lence. Compared to turbulence amplitude, particle transport
is found to crucially depend on whether rotation is stronger
or weaker than flow shear. When rotation is stronger than
flow shear, the transport is inhibited by inertial waves, being
quenched inversely proportional to the rotation rate, while in
the opposite case, it is reduced by shearing. Furthermore, the
anisotropy is found to be very weak in the strong rotation
limit �by a factor of 2� while significant in the strong shear
limit. The turbulent viscosity is found to be negative with an
inverse cascade of energy as long as the rotation is suffi-
ciently strong compared to the flow shear, while it is positive
in the opposite limit of weak rotation. Even if the eddy vis-
cosity is negative for strong rotation, flow shear, which trans-
fers energy to small scales, has an interesting effect by slow-
ing down the rate of inverse cascade with the value of
negative eddy viscosity decreasing as ��T��A−2 for the
strong shear. Furthermore, the interaction between the shear
and the rotation is shown to give rise to a nondiffusive flux
of angular momentum known as the anisotropic kinetic 	
effect �AKA� �32� or as the � effect in the astrophysical
community. The appearance of the nondiffusive term in the
transport of angular momentum prevents a solid body rota-
tion from being a solution of the Reynolds equation �33,34�,
and thus act as a source for the generation of large-scale
shear flows. For instance, this effect has been advocated as a
robust mechanism to explain the differential rotation in the
solar convective zone. Starting from the Navier-Stokes equa-
tion, it is possible to show that these fluxes arise when there
is a cause of anisotropy in the system, either due to an an-
isotropic background turbulence �see �20� and references
therein� or else due to inhomogeneities such as an underlying
stratification. In �31�, we found that a � effect appears in
sheared-rotating turbulence even in the absence of external
sources of anisotropy. This is because the shear induces an
anisotropic turbulence which combined to the rotation gives
rise to nondiffusive fluxes.

In this paper, we consider the complementary case when
rotation and shear are parallel to each other. By assuming
either sufficiently strong shear or rotation rate, we employ a
quasilinear analysis to compute turbulence level, eddy vis-
cosity, and particle transport for temporally short-correlated
homogeneous forcing. As the computation of these quantities
involve too complex integrals to be analytically tractable,
they are analytically computed by assuming an ordering in
time scales. In our problem, there are three important �in-
verse� time scales: the shearing rate A, the rotation rate �,
and the diffusion rate D=�ky

2 where � is the �molecular�
viscosity of the fluid and ky

−1 is a characteristic small scale of
the system. We first distinguish the two cases of strong rota-
tion ���A� and weak rotation ���A�. The first regime of
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strong rotation will be studied in the strong shear �A�D�
and weak shear �A�D� regime. On the other hand, the sec-
ond regime of weak rotation will be considered only in the
strong shear �A�D� case, as the effects of both shear and
rotation disappear in the opposite limit �A�D�.

II. MODEL

We consider an incompressible fluid in a rotating frame

with average rotation rate �̃, which are governed by

�tu + u · �u = − �P + ��2u + F − 2�̃ 
 u ,

� · u = 0. �1�

Following �25�, we study the effect of a large-scale shear
U0=U0�x� ĵ on the transport properties of turbulence by writ-
ing the velocity as a sum of a shear �chosen in the x direc-
tion� and fluctuations: u=U0+v=U0�x� ĵ+v=−xA ĵ+v. With-
out loss of generality, we assume A�0. In the following, we
consider the configuration of Fig. 2 where the shear and ro-
tation �in the x direction� are parallel and simplify notation

by using �=2�̃. Then, the Coriolis force is simply
��−vzj+vyk�, where i, j, and k are the unit vectors associ-
ated with the Cartesian coordinates. Note that our x-y coor-
dinates are not conventional in that our x and y directions
correspond to y and x in previous works �see �16� for in-
stance�. Therefore, the shearing, the streamwise, and the
spanwise direction correspond to the x, y, and z direction,
respectively. Note that for the particular configuration con-
sidered here, the stationary equation for the large-scale ve-
locity reduces to

− �xP + Fx = 0,

− �zP + Fz − �U0�x� = 0. �2�

For F=0, there is no equilibrium for the large-scale flow
contrary to the perpendicular case where the Coriolis force
can be balanced by pressure. Thus, we assume a large-scale
forcing F to maintain an equilibrium for the large-scale flow
�e.g., Ref. �35��. In a real physical situation, this large-scale
forcing can be provided by thermal wind associated with
�latitudinal� temperature gradient on large scales �14,36�.
Density and/or temperature fluctuations in this case can then
be included as a part of the small-scale external forcing f in
our formalism. Note that a similar approach was adopted in
Ref. �36� by computing the transport of momentum and par-

ticle in stars, including the polar region. A consistent treat-
ment of fluctuating temperature requires the extension of the
present work to stratified rotating sheared turbulence and
will be performed in future publications.

To calculate turbulence amplitude �or kinetic energy� and
turbulent transport, we need to solve the equation for the
fluctuating velocity field. To this end, we employ a quasilin-
ear theory �37� where the nonlinear local interactions be-
tween small scales are neglected compared to nonlocal inter-
actions between large and small scales and obtain

�tv + U0 · �v + v · �U0 = − �p + ��2v + f − � 
 v ,

� · v = 0, �3�

where p and f are the small-scale components of the pressure
and forcing, respectively. As noted in the Introduction, this
approximation, also known as the RDT �5�, is justified in the
case of strong shear as the latter induces a weak turbulence,
leading to a weak interaction between small scales which is
negligible compared to the �nonlocal� interaction between
the shear and small scales. This has in fact been confirmed
by direct numerical simulations, proving the validity of the
predictions of quasilinear theory with a constant-rate shear
both in the nonrotating �9� and rotating unforced �16� turbu-
lence and also for forced turbulence �11�. Further, note that
the quasilinear analysis is also valid in the limit of rapid
rotation �38�.

To solve Eq. �3�, we introduce a Fourier transform with a
wave number in the x direction evolving in time in order to
incorporate nonperturbatively the effect of the advection by
the mean shear flow �5,6,25�:

v�x,t� =
1

�2��2 � d3kei�kx�t�x+kyy+kzz�ṽ�k,t� , �4�

where kx�t�=kx�0�+kyAt. From Eqs. �3� and �4�, we obtain
the following set of equations for the fluctuating velocity:

A�v̂x = − ikyp̂ + f̂ x,

A�v̂y − Av̂x = − ikyp̂ + f̂ y + �v̂z,

A�v̂z = − ikzp̂ + f̂ z − �v̂y ,

0 = v̂x + v̂y + �v̂z. �5�

Here, the new variables v̂= ṽ exp���kH
2 t+kx

3 /3kyA�� and simi-

larly for f̂ and p̂ have been used to absorb the diffusive term,
and the time variable has been changed to =kx�t� /ky. In the
remainder of the paper, we solve Eq. �5� for the fluctuating
velocity �with a vanishing velocity as initial condition�. We
then use these results and the correlation of the forcing �de-
fined in Sec. II C� to compute the turbulence intensity and
transport �defined in Sec. II B�.

A. Transport of angular momentum

As the large-scale velocity is in the y direction, we are
mostly interested in the transport in that direction. The large-
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dx

Ω

FIG. 2. Sketch of the configuration in the parallel case.
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scale equation for the y component of velocity U0 is given by
Eq. �1� with a supplementary term � ·R, where R is the
Reynolds stress given by

R = �vvy� . �6�

To understand the effect of R on the transport of angular
momentum, one can formally Taylor expand it with respect
to the gradient of the large-scale flow,

Ri = �iU0 − �T�xU0�i1 + ¯ = �iU0 + �TA�i1 + ¯ . �7�

Here, �i and �T are the two turbulent transport coefficients
from nondiffusive and diffusive momentum flux, respec-
tively. Note that the first term in the expansion is due to the
small-scale driving and the Coriolis force in Eq. �1� which
break the Galilean invariance �39�. First, �T is the turbulent
�eddy� viscosity, which simply changes the viscosity from
the molecular value � to the effective value �+�T. Note that
the sign of eddy viscosity represents the direction of energy
cascade, with positive �negative� value for direct �inverse�
cascade. Second, the first term involving �i in Eq. �7� is
proportional to the rotation rate rather than the velocity gra-
dient. This means that it does not vanish for a constant ve-
locity field and thus permits the creation of gradient in the
large-scale velocity field. This term bears some similarity
with the 	 effect in dynamo theory �40,41� and has been
known as the � effect �17,33� or anisotropic kinetic alpha
�AKA� effect �32�. Similarly to the 	 effect, this effect exists
only if the small-scale flow lacks parity invariance �going
from right-handed to left-handed coordinates�. However, in
contrast to the 	 effect, the � effect requires anisotropy for
its existence �17,32�.

B. Particle (or heat) transport

To study the influence of rotation and shear on the particle
and heat transport, we have to supplement Eq. �1� with an
advection-diffusion equation for these quantities. We here
focus on the transport of particles since a similar result also
holds for the heat transport. The density of particles N�x , t� is
governed by the following equation:

�tN + U · �N = D�2N , �8�

where D is the molecular diffusivity of the particle. Note
that, in the case of the heat equation, D should be replaced
by the molecular heat conductivity �. Writing the density as
the sum of a large-scale component N0 and small-scale fluc-
tuations n �N=N0+n�, we can express the evolution of the
transport of chemicals on large scales by

�tN0 + U0 · �N0 = �D�ij + DT
ij��i� jN0, �9�

where the turbulent diffusivity is defined as �vin�=−DT
ij� jN0.

The turbulent diffusivity is computed in the following to
study the effect of rotation and flow shear on turbulent trans-
port of chemicals which can be highly anisotropic. Note that
the transport of a passive scalar quantity �contrary to the
angular momentum which is a vector quantity� has to be
diffusive due to the fact that it is solely advected by the flow
�42�.

For simplicity, we assume a unit Prandtl number D=� and
apply the transformation introduced in Eq. �4� to the density
fluctuation n to obtain the following equation:

�n̂ =
�− � jN0�

A v̂ j . �10�

Equation �10� simply shows that the fluctuating density of
particles can be obtained by integrating the fluctuating veloc-
ity in time.

C. External forcing

As mentioned in the Introduction, we consider a turbu-
lence driven by an external forcing f. To calculate the turbu-
lence amplitude and transport defined in Sec. II A and Sec.
II B �which involve quadratic functions of velocity and/or
density�, we prescribe this forcing to be short correlated in
time �modeled by a � function� and homogeneous in space
with power spectrum �ij in the Fourier space. Specifically,
we assume

� f̃ i�k1,t1� f̃ j�k2,t2�� =  f�2��3��k1 + k2���t1 − t2��ij�k2� ,

�11�

for i and j=1, 2, or 3. The angular brackets stand for an
average over realizations of the forcing, and  f is the �short�
correlation time of the forcing. Note that the � correlation is
valid as long as the correction time  f is the shortest time
scale in the system �i.e.,  f ��−1, A−1, 1 / ��k2��.

For most results that will be derived later, we assume an
incompressible and isotropic forcing where the spectrum of
the forcing is given by

�ij�k� = F�k���ij − kikj/k2� . �12�

It is easy to check that in the absence of rotation and shear,
this forcing leads to an isotropic turbulence with intensity

�v0
2� =

2 f

�2��2�
0

� F�k�
�

dk , �13�

where the subscript 0 stands for a turbulence without shear
and rotation.

III. ANALYTICAL RESULTS

To investigate turbulence property in the parallel case, we
rearrange Eq. �5�, thereby eliminating the pressure terms,
obtaining the following equations for fluctuating velocity:

�	1


��
� + 2�v̂x�� + ��̄2 − �̄��v̂x = �	h1��

A
� − �̄

ĥ2��
A ,

�v̂z = −
�

�
��v̂x� +

�̄ − �

�
v̂x +

ĥ2��
�A

,

v̂y = − �v̂x + �v̂z� . �14�

Here, �=kz /ky, �=1+�2=kH
2 /ky

2, and �̄=� /A. To calculate
the turbulence amplitude and transport, the first equation in
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Eq. �14� is to be solved with initial conditions v̂x�0�=0 and
��v̂x�=0

=h1�0� / ��+0
2�A.

Unfortunately, we were unable to find an exact solution of
Eq. �14� in the general case. To gain a physical insight into
the role of inertial waves and flow shear in turbulent trans-
port, we consider the two limits of strong rotation where the
effect of waves dominates shearing ���A� and weak rota-
tion where shearing dominates the effects of waves ��
�A� in Secs. III A and III B, respectively. Approximate so-
lutions can be derived in these two regimes which can then
be used for deriving analytic form of correlation functions
for turbulence intensity and transport. However, the WKB
approximation used to study the rapid rotation limit being ill
defined for some value of the parameter, we consider an
exactly solvable case where all quantities can be calculated
in Sec. III C.

A. Rapid rotation limit: �šA (and a�0)

For ��̄��1, we seek for a WKB solution of the first equa-
tion in Eq. �14�. However, since this approximation breaks
for =0, we assume that the initial value is positive �0=a
�0� to make our solution meaningful. In Sec. III C, we
study an exactly solvable case and show that the solution can
be altered by negative initial value �0=a�0�. Assuming
0=a�0, we obtain the following solutions for the three
components of the velocity for �� /A��1:

v̂x�� =
1

A�� + 2�3/4


�
0



dt ĥ1�t�
�� + t2�1/4 cos�v�t,��

+ �ĥ2�t��� + t2�1/4 sin�v�t,��� ,

v̂y�� =
1

A��� + 2�3/4�
0



dt ĥ1�t�
�� + t2�1/4 
−  cos�v�t,��

+ ���� + 2 sin�v�t,���

+ ĥ2�t��� + t2�1/4
− � sin�v�t,��

− ��� + 2 cos�v�t,���� ,

v̂z�� =
1

A��� + 2�3/4�
0



dt ĥ1�t�
�� + t2�1/4 
− � cos�v�t,��

− ��� + 2 sin�v�t,���

+ ĥ2�t��� + t2�1/4
− �� sin�v�t,��

+ �� + 2 cos�v�t,���� . �15�

Here,

�0 = ��̄�, � = sgn��̄� ,

r�t� = �� + 2 −
��

2�0
ln� + �� + 2� + O 1

�0
2� ,

v�t,� = �0�r�t� − r��� . �16�

Due to the similarity between Eq. �15� and the one obtained
in the perpendicular case �31�, we give only results and refer
the reader to our previous paper for details of the derivation.

1. Turbulence intensity

In the weak shear limit ���1� where the shear is negli-
gible, we obtain the following result for the turbulent inten-
sity:

�vx
2� = �vy

2� = �vz
2� =

2 f

3�2��2 � dk
F�k�

�
=

1

3
�v0

2� . �17�

Here, �v0
2� is the turbulence amplitude in the absence of ro-

tation and shear �see Eq. �13��. These results thus show that,
in the large rotation limit, the turbulence intensity is isotropic
and is equal to the one without rotation �see Eq. �13�� for
sufficiently weak shear with ��1. Furthermore, in this limit
of sufficiently weak shear where �� ,D��A, turbulence in-
tensity is independent of rotation since waves do not neces-
sarily quench turbulence level. A similar result was also ob-
tained in magnetohydrodynamics �MHD� turbulence and
stratified turbulence where magnetic fields and gravity waves
mainly affect transport without much effect on the turbulence
level �3,29,30�. We shall show below that a strong anisotropy
can be induced when shearing effect is not negligible ��
�1� even in the rapid rotation limit ���A�.

In order to understand the effect of flow shear, we now
consider the strong shear limit ���1�. In this limit, we ob-
tain

�vx
2� =

 f

�2��3A � d3k�� + a2F�k� � ��v0
2� ,

�vy
2� = �vz

2� =
 f

�2��3A � d3k�� + a2F�k�
− ln �

3
� ��ln ���v0

2� ,

�18�

to leading order in ��1. Note that in the calculation of �vx
2�,

we neglected the component proportional to a=kx /ky as it is
odd in both kx and ky and thus vanishes after integration over
the angular variables for an isotropic forcing. The last terms
in Eq. �18�, expressed in terms of the turbulence amplitude in
the absence of rotation and shear �v0

2� �see Eq. �13��, explic-
itly show the dependence of turbulence level on rotation and
shear. That is, all the components of turbulence intensity are
reduced for strong shear ��1. Further, the x component
along shear is reduced as ��A−1, while the other two com-
ponents as ��ln ��, with an effectively weaker turbulence in
the shear direction than in the perpendicular one, by a factor
of �ln ��. This shows that shear flow can induce anisotropic
turbulence �unlike rotation� even when the forcing is isotro-
pic. This result is similar to that obtained in the simulation of
a Couette flow at high rotation rate �43� where the velocity
fluctuations perpendicular to the wall exceed that in the
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streamwise direction. Nevertheless, Eq. �18� shows that a
strong rapid rotation yet insures an isotropy in the velocity
fluctuations in y-z directions ��vy

2�= �vz
2��.

2. Transport of angular momentum

First, in the large rotation and weak shear limit, the Rey-
nolds stress becomes purely diffusive �with no � effect� with
the turbulent viscosity

�T �
� f

32�2��2����0

+�

dk
F�k�

�
. �19�

This result shows that the turbulent viscosity is positive and
proportional to �−1 for large �.

In comparison, in the strong shear limit ���1�, we obtain
the turbulent viscosity in the strong shear limit as

�T =
�vxvy�

A
= −

 f

�2��3A2 � d3kF�k� . �20�

Equation �20� shows that the turbulent viscosity is negative
�as F�k��0� in the strong shear limit, in sharp contrast to the
weak shear limit where �T�0 �see Eq. �19��. Furthermore,
the magnitude of �T is reduced by the shear ��A−2� and is
independent of rotation, which should also be compared with
the weak shear limit �see Eq. �19� where �T��−1�. There-
fore, the turbulent viscosity changes from positive �for weak
shear� to negative �for large shear� as the ratio of shear to
dissipation increases. This result can be understood if we
assume that, as in most rapidly rotating fluid, the inverse
cascade is associated with the conservation of a potential
vorticity �44�. In the presence of strong shear �compared to
dissipation�, the potential vorticity is strictly conserved giv-
ing rise to an inverse cascade �negative viscosity�. When the
dissipation increases, the potential vorticity is less and less
conserved and thus the inverse cascade is quenched. Our
results show that there is a transition from inverse to direct
cascade as the dissipation is increased. A similar behavior is
also found in two-dimensional hydrodynamics �HD� where
an inverse cascade can be shown to be present only for suf-
ficient weak dissipation �27�.

It is important to note that the negative viscosity �T�0
obtained here for strong rotation and/or strong shear ��
�A��ky

2� signifies the amplification of shear flow as the
effect of rotation favoring inverse cascade dominates shear-
ing �generating small scales�. However, the magnitude of �T
is reduced by shear as ��T��A−2 since flow shear inhibits the
inverse cascade. This can be viewed as “self-regulation”—
that is, self-amplification of shear flow is slowed down as the
latter becomes stronger.

3. Transport of particles

In the rapid rotation limit ���� /A�1�, turbulent particle
diffusivities can be obtained as

DT
xx �

 f

8�����0

� F�k�
�

dk ,

DT
yy = DT

zz �
 f

16�����0

� F�k�
�

dk �
1

2
DT

xx. �21�

Note that in this case, the result is not sensitive to the value
of the parameter � and thus we do not distinguish between
the weak and large shear limits. Equation �21� shows that
DT

xx, DT
yy, and DT

zz are all reduced as �−1 �with no effect of the
shear� for large � and also that there is only a slight aniso-
tropy in the transport of scalar: the transport in the direction
of the rotation is twice as large than the one in the perpen-
dicular direction �21�. Interestingly, this anisotropy in the
transport of particles is not present in turbulence intensity
�see Eq. �17��. This is because waves can affect the phase
between density fluctuation and velocity, not necessarily al-
tering their amplitude. However, it is important to note that
this anisotropy is only a factor of 2, much weaker than that in
sheared turbulence without rotation �25�.

B. Weak rotation limit: �™A

In the weak rotation limit, we expand all the quantities in
powers of �0= �� /A� as

X�� = X0�� + �0X1�� + ¯ �22�

in the weak rotation limit ���A� and calculate the turbu-
lence intensity and transport up to first order in �0. For the
sake of brevity, we here just provide the final results of the
calculation. Note that in this limit, we are only interested in
strong shear case ���1� since in the opposite limit where
�ky

2�A��, the effects of both shear and rotation simply
disappear to leading order.

1. Turbulence intensity

In the strong shear limit ���1�, we obtain the turbulence
intensity up to order � as follows:

�vx
2� =

 f

2�2��3A � d3k�� + a2�F�k�	 �

2��
− T�a� −

a

� + a2� ,

�vy
2� �

 f

�2��3A � d3kF�k�	�� + a2��2 �

2��
− T�a��2

+ 1� �2

3�
 3

2�
�1/3

��1/3� ,

�vz
2� �

 f

�2��3A � d3kF�k�	�� + a2��2 �

2��
− T�a��2

+ 1� 1

3�
 3

2�
�1/3

��1/3� . �23�

Here, � is the Gamma function. Note that the first correction
�proportional to �� vanishes and consequently, the turbu-
lence amplitude is the same as in the case of shear without
rotation �25�, with stronger turbulence in the direction per-
pendicular to the shear than in the parallel one.
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2. Transport of angular momentum

In the strong shear limit ���1�, momentum flux in the
azimuthal direction can be shown to be purely diffusive and
given by

�vxvy� �
 f

�2��3A � d3k�� + a2�F�k�	−
1

2�� + a2�
+ �2 �

2��

− T�a��2� . �24�

This recovers the eddy viscosity of sheared turbulence with-
out rotation �25�, showing that its value decreases as �A−2

for strong shear. This result agrees with previous studies of
nonrotating sheared turbulence �23� which found a Reynolds
stress inversely proportional to the shear, leading to a loga-
rithm dependence on the distance to the wall for the large-
scale shear flow.

Alternatively, the component of the Reynolds stress in-
volving the velocity component vz does not vanish and is odd
in �. Thus, the � effect appears here in the z component of
the Reynolds stress �z �recall that in the perpendicular case,
the � effect was present only in �vxvy�� in the form

�z � −
 f

�2��3A2 � d3k
��2/3�

6�
 3

2�
�2/3

F�k�


�3�2 − 1���� + a2��2 �

2��
− T�a��2

+ 1� .

�25�

Equation �25� shows that the sign of �z is indefinite �as both
signs appear in the prefactor �3�2−1��. However, as for Eq.
�24�, in the case of an isotropic forcing, the term proportional
to �2 dominates, making �z negative. This � effect appears
due to the anisotropy between the streamwise and the span-
wise components of the velocity, due to the shear �alone�.

3. Transport of particles

Up to order �, we find the turbulent diffusivity of par-
ticles as

DT
xx �

 f

�2��3A2 � d3k��� + a2�F�k� �

2��
− T�a��2

,

DT
zz �

 f

�2��3A2 � d3kF�k�	�2�� + a2� �

2��
− T�a��2

+ 1� 1

3�
 3

2�
�2/3

��2/3� . �26�

Here again, the first correction due to rotation vanishes and
one can recover the result of turbulence in presence of shear
alone: DT

xx�A−2 and DT
zz�A−4/3, with effectively faster

transport in the spanwise direction compared to the shear
direction.

C. Symmetric perturbation (�=0)

In this section, we consider a symmetric perturbation with
kz=0 by assuming a forcing that is symmetric in the span-

wise direction with no dependence on z. Note that even
though kz=0, vz and vy are closely linked through rotation
�i. Details of the derivation are given in Appendix A. The
interest of this case is that we obtain solutions for arbitrary
values of �0 and so we can look at the �0�1 limit without
the a�0 limit. Consequently, we will show here only the
results in the large rotation limit.

1. Turbulence amplitude

In the large rotation limit �0�1, we obtain the following
leading order contribution of the turbulent amplitude:

�vx
2� =

 f

�2��3A � d3kF�k��1 + a2,

�vz
2� =

 f

�2��3A � d3kF�k��1 + a2− ln �

3
� . �27�

Thus, the turbulence amplitude is larger in the y-z plane than
the one in the shear direction by a logarithmic factor. More-
over, Eq. �27� shows that the turbulence amplitude does not
depend on the rotation rate in the large rotation limit but is
quenched by shear only. In particular, �vy

2�= �vz
2�. These re-

sults are the same as in the case where the shear and the
rotation are perpendicular �31� and thus agree with the WKB
solution of Sec. III A.

2. Turbulent transport of momentum

In the large rotation limit ��0�1�, we obtain the follow-
ing turbulent viscosity:

�T = −
 f

�2��3A2 � d3kF�k� . �28�

Equation �28� shows that the turbulent viscosity does not
depend on rotation in the large rotation limit and is obviously
negative. Note that this result is the same as in the perpen-
dicular case �see Eq. �20�� and, thus again, agrees with the
WKB solution found previously.

3. Particles transport

In the limits of strong shear ���1� and large rotation
��0�1�, the transport of particles is given by

DT
xx �

 f

8�����0

� F�k�
�

dk +
� f

�2��3A����a�0
d3k�1 + a2F�k� ,

DT
zz �

 f

16�����0

� F�k�
�

dk +
� f

�2��3A����a�0
d3k�1 + a2F�k� .

�29�

The transport of particles in Eq. �29� involves two contribu-
tions, both of which scale as �−1 for rapid rotation. The first
contribution comes from the integration by parts and has to
be kept only because �0 can vanish for a=0 while the second
comes from the stationary point in the integration �see Ap-
pendix B 3 for details�. Note that the ratio of the second term
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to the first one is equal to �k2 /A��. Consequently, in the
strong shear limit ���1�, the first term dominates. Thus, the
transport of particles is the same as the one found with the
WKB analysis �see Sec. III A�.

To summarize, in this section, we solved Eq. �14� exactly
for �=0 and compared the results with the WKB analysis
performed in Sec. III A �which is valid only for a�0�. The
results being the same, the conclusions reached from WKB
analysis remain valid even if a�0.

IV. CONCLUSION

In this paper, we have performed a thorough investigation
of the combined effects of shear and rotation on the structure
of turbulence, by using a quasilinear theory. We assumed an
external forcing in the Navier-Stokes equation which leads to
an equilibrium situation where the dissipation �whose effect
is enhanced by the shear� is balanced by the injection of
energy due to forcing. It is useful to recall that there are three
�inverse� time scales in the problem: the shearing rate A, the
rotation rate �, and the diffusion rate D=�ky

2, where � is the
�molecular� viscosity of the fluid and 1 /ky is a characteristic
small scale of the forcing. The first regime of strong rotation
���A� has been studied in the strong shear �A�D� and
weak shear �A�D� limits. However, the second regime of
weak rotation has been considered only in the strong shear
�A�D� case, as the effects of both shear and rotation disap-
pear in the opposite case.

In the large rotation limit �����A�, we found that the
results coincides with that obtained in the case where the
rotation and the shear are perpendicular. Specifically, we ob-
tained the following results:

�1� The turbulent intensity is reduced only by a strong
shear �i.e., in the case of strong rotation and strong shear�
and in an anisotropic way.

�2� As the dissipation decreases �compared to the shear�,
there is a crossover from a positive to a negative viscosity.

�3� The transport of particle is reduced by rotation, with a
slight anisotropy of a factor 2, largely unaffected by shear.

In the opposite weak rotation limit �����A�, we found
that the main reduction is due to the shear with an aniso-
tropic turbulence with preferred motion and transport in the
plane perpendicular to the shear. Contrary to the perpendicu-
lar case, we found here that the turbulence intensity and the
particle transport are not affected by rotation. Furthermore,
we found nondiffusive flux for momentum transport �the so-
called � effect� which transfers energy from the fluctuating
velocity field to the large-scale flow. This effect can appear
even for isotropic forcing due to the fact that the shear in-
duces an anisotropic turbulence. In this paper, the � effect
appear on the z component which has to be contrasted with
the perpendicular case �31� where the nondiffusive fluxes
appeared on the x component.

Table I summarizes the findings of this paper together
with these of Ref. �31� by highlighting the quenching of
these quantities due to large shearing rate A and the rotation

rate � �or their ratio, �̄=� /A�. We choose to show the
result in the strong shear limit ��=�ky

2 /A�1� as it is the
proper limit to capture the effect of the shear. Furthermore,

from the physical point of view, it is the meaningful limit in
a vast number of systems �for example, the Sun�.

These results can have significant implications for astro-
physical and geophysical systems. For instance, the � effect
and/or negative viscosity can provide a mechanism for the
generation of ubiquitous large-scale shear flows, which are
often observed in these objects. Furthermore, the anisotropic
mixing of scalars should be taken into account in understand-
ing the surface depletion of light elements in stars �45�. Fi-
nally, we note that numerical confirmation of our prediction
and the extension of our work to stratified rotating sheared
turbulence with and/or without magnetic fields remain chal-
lenging important problems, and will be addressed in future
publications.
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APPENDIX A: SYMMETRIC PERTURBATION (�=0)

In this section, we consider a symmetric perturbation with
kz=0 by assuming a forcing that is symmetric in the span-
wise direction with no dependence on z. Note that even
though kz=0, vz and vy are closely linked through rotation
�x̂. For �=kz /ky =0, the homogeneous part of the first equa-
tion in �14� becomes

�	1


��
1 + 2�v̂x�� + �̄2v̂x = 0. �A1�

Solutions of the homogeneous problem are thus Bessel func-
tions. Using the method of variation of parameters, we can
then express the general solution of the first equation to Eq.
�16� as

TABLE I. Summary of our results obtained for the perpendicu-
lar �31� and parallel cases in the strong shear limit ��=�ky

2 /A�1�
and for an isotropic forcing. In the perpendicular case, the rotation
is in the z direction, whereas it is in the x direction in the parallel
case. In both cases, the shear is in the x direction. The C symbol
stands for an additional constant of order 1.

Perpendicular �31� Parallel

��A ��A ��A ��A

�vx
2� A−1 A−1�1+C�̄� A−1 A−1

�vy
2���vz

2� A−1�ln �� A−2/3�1+C�̄�ln ��� A−1�ln �� A−2/3

�T −A−2 A−2 −A−2 A−2

�x 0 A−2�ln �� 0 0

�z 0 0 0 A−4/3

DT
xx �−1 A−2�1+C�̄�ln ��� �−1 A−2

DT
yy �DT

zz �−1 A−4/3�1+C�̄�ln ��� �−1 A−4/3
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v̂x�� =
��0

2�1 + 2�
0



dt	h1�t�
A

L01�t,�

+
h2�t�
A

�1 + t2L11�t,�� . �A2�

Here again, �0= ��̄�, �=sgn��̄�, and Lnp are defined by

Lnp�t,� = Yn��0
�1 + t2�Jp��0

�1 + 2�

− Jn��0
�1 + t2�Yp��0

�1 + 2� . �A3�

The second equation of system �16� can then be used to
obtain the other components of the velocity in the form

v̂z�� =
��0

2
�

0



dt	h1�t�
A

�L00�t,� −
h2�t�
A

�1 + t2L10�t,�� ,

�A4�

and a similar expression for v̂y��. We can now use Eqs. �A2�
and �A4� to calculate turbulence amplitude �Appendix A 1�
and transport �Appendix A 2 and Appendix A 3�. Note that
Eqs. �A2� and �A4� are exact solutions valid for all values of
�0.

1. Turbulence amplitude

From Eqs. �A2� and �A4�, we can easily obtain the turbu-
lence amplitude as

�vx
2� =

 f�
2�0

2

4�2��3A � d3kF�k��1 + a2��X1�k� + X2�k�� ,

�vz
2� =

 f�
2�0

2

4�2��3A � d3kF�k��1 + a2��X3�k� + X4�k�� .

�A5�

Here, for simplicity, we considered only an isotropic forcing,
given by Eq. �12�, and defined the following integrals:

X1�k� = �
a

+� e−2��Q��−Q�a��

1 + 2 �L01�a,��2d ,

X2�k� = �
a

+� e−2��Q��−Q�a��

1 + 2 �L11�a,��2d ,

X3�k� = �
a

+�

e−2��Q��−Q�a���L00�a,��2d ,

X4�k� = �
a

+�

e−2��Q��−Q�a���L10�a,��2d . �A6�

Here, Lnp’s are given by Eq. �A3�. We now consider the
strong shear limit: �=�ky

2 /A�1. As both Bessel functions
becomes as �1+2�−1/4 �up to a trigonometric functions� for
large , the first two integrals converge as �→0. Thus, it is
sufficient to put �=0 in X1 and X2 in Eq. �A6� to obtain the
leading order behavior for ��1. In comparison, the inte-

grand of X3 and X4 behaves as 1 / for �1, giving a con-
tribution of order ln � to leading order.

We now examine the turbulence amplitude in the large
rotation limit: �0�1. To do so, we use the asymptotic be-
havior of the integrals �A6� derived in Appendix B 1 b. Us-
ing Eqs. �B5� and �B7� in Eq. �A5�, we obtain the leading
order contribution of the turbulent amplitude given by Eq.
�27� in the main text.

2. Turbulent transport of momentum

We now calculate the turbulent viscosity �T defined by
�vxvy�=−�T�xU0=�TA. From Eqs. �A2� and �A4�, we can
derive the Reynolds stress in the case of an isotropic forcing:

�vxvy� = −
 f�

2�0
2

4�2��3A � d3kF�k��1 + a2��X5�k� + X6�k�� ,

�A7�

where

X5�k� = �
a

+� e−2��Q��−Q�a��

1 + 2 �L01�t,��2d ,

X6�k� = �
a

+� e−2��Q��−Q�a��

1 + 2 �L11�a,��2d . �A8�

Here, Lnp’s are again given by Eq. �A3�. Note that the ex-
pression for the transport of angular momentum �Eq. �A7�� is
the same as that of �vx

2� �Eq. �A5�� except for the multiplica-
tive factor of −. This is simply because, for �=0, the in-
compressibility condition imposes v̂y =−v̂x. By using the
asymptotic behavior of Bessel functions for the large argu-
ment, we see that the two integrals X5 and X6 in Eq. �A8� can
be evaluated in the strong shear limit by just putting �=0.
Consequently, the turbulent viscosity is of order A−2 for any

value of �̄.
In the large rotation limit ��0�1�, we can estimate the

integrals �A8� and obtain the turbulent viscosity given by Eq.
�28� in the main text.

3. Particle transport

The fluctuating concentration of particles can be obtained
by the integration of the fluctuating velocities �A2� and �A4�
�see Eq. �10��. Then, the diagonal part of turbulent diffusivity
can be obtained as

DT
xx =

 f�
2�0

2

4�2��3A2 � d3k�1 + a2�F�k��P1�k� + P2�k�� ,

DT
zz =

 f�
2�0

2

4�2��3A2 � d3k�1 + a2�F�k��P3�k� + P4�k�� .

�A9�

Here, we defined integrals Pi which all have the following
form:
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Pi�k� = �
a

+�

de−2��Q��−Q�a��Fi���
a



Fi�t�dt �A10�

for i=1 to 4. The functions Fi��’s are defined by

F1 =
L01�a,�
�1 + 2

, F2 =
L11�a,�
�1 + 2

,

F3 = L00�a,�, F4 = − L10�a,� . �A11�

In the large rotation limit ��̄�1�, the Fi’s are oscillating
functions. Thus, to evaluate integrals �A10� in the strong
shear limit ���1�, we cannot simply put �=0 in Eq. �A10�
as is explained in Appendix B 3. A careful analysis �see
Appendix B 3� then gives us Eq. �29� of the main text in the
limits of strong shear ���1� and large rotation ��0�1�.

APPENDIX B: ASYMPTOTIC EXPANSION
OF INTEGRALS

In Sec. III C, we took a large shear limit ���1� and ob-
tain Eq. �A5� for the turbulence intensity, Eq. �A7� for the
transport of angular momentum, and Eq. �A9� for the trans-
port of particles in terms of integrals involving Bessel func-
tions of an argument depending on the rotation. We here
derive asymptotic behavior of these integrals to simplify our
results.

1. Nonoscillating integrands

For nonoscillating integrands, it is sufficient to put �=0 in
the integrals to find the large shear limit �the resulting inte-
gral converges as �→0�. Here, we provide asymptotic be-
havior of the following integrals for small or large �0:

X1�k� = �
a

+� 1

1 + 2 �L0,1�t,��2d ,

X2�k� = �
a

+� 1

1 + 2 �L11�a,��2d ,

X5�k� = �
a

+� 

1 + 2 �L01�t,��2d ,

X6�k� = �
a

+� 

1 + 2 �L11�a,��2d . �B1�

Here Lnp’s are given by Eq. �A3�.

a. Small rotation limit (�0™1)

To calculate X1 and X5, one can use the asymptotic expan-
sion of the Bessel functions and readily obtain

X5 �
4

�2�0
2�

a

� d

�1 + 2�2

=
2

�2�0
2	�

2
− arctan�a�� −

a

1 + a2� ,

X5 �
4

�2�0
2�

a

� d

�� + 2�2

=
2

�2�0
2�1 + a2�

. �B2�

If we apply the same strategy to the calculations of X2 and
X6, the resulting expression would not be integrable, so we
have to calculate it otherwise,

X3 �
2

��0
�1 + a2�

a

� J1
2��0

�1 + 2�
1 + 2 d

=
2

��1 + a2�
�0a

� J1
2���0

2 + x2�
�0

2 + x2 d

�
2

��1 + a2�
0

� J1
2�x�
x2 �

8

3�2�1 + a2
,

X6 �
2

��0
�1 + a2�

a

� J1
2��0

�1 + 2�
1 + 2 d

�
2

��0
�1 + a2�

0

� J1
2�x�
x

�
1

��0
�1 + a2

. �B3�

b. Large rotation limit (�0š1)

Using the Bessel asymptotic behavior for the large argu-
ment, we obtain the following formula for the first integral:

X1 �
4

�2�0
2�1 + a2�

a

+� cos2��0
�1 + a2 − �1 + 2��
�1 + 2�3/2 d

�
2

�2�0
2�1 + a2�

a

+� 1

�1 + 2�3/2

=
2

�2�0
2�1 + a21 −

a
�1 + a2� , �B4�

and similarly for the other three integrals. Finally, we obtain
the following asymptotic behavior for the four integrals
�B1�:

X1 � X2 �
2

�2�0
2�1 + a21 −

a
�1 + a2� ,

X5 � X6 �
2

�2�0
2

1

1 + a2 . �B5�

2. Logarithmic divergence

As noticed in Appendix A 1, there is a logarithmic diver-
gence arising in the calculation of X3 and X4. We here cal-
culate this divergence in the case of a fast oscillation. Fol-
lowing �25�, we change the integration variable from  to y
=2�3 /3, replace the Bessel function by the expression valid
for large argument ���1�, and then obtain the following, to
leading order in �:
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X3�k1� =
2

��0
�

�a3

�

dy
e−ydy

�3y�2/3�2��1/3�1 + 3y

2�
�2/3


 �cos	�0�1 + 3y

2�
�2/3

−
�

4
�Y0�w�a�� − sin	�0�1 + 3y

2�
�2/3

−
�

4
�J0�w�a���2

. �B6�

We see that as � tends to zero, the integrand in Eq. �B6� becomes proportional to 1 /y, giving a contribution of the order ln �.
In the large rotation limit ��0�1�, we replace the Bessel functions by their asymptotic behavior to obtain

X3 �
4

�2�0
2�1 + a2�

�a3

� e−ydy

�3y�2/3�2��1/3

sin2��0	�1 + a2 −�1 +  y

�
�2/3��

�1 + 3y

2�
�2/3

�
2

�2�0
2�1 + a2�

�a3

� 1

3

e−ydy

�2�y2

3
�2/3

+ y2

�
2

�2�0
2�1 + a2

− ln �

3
�B7�

to leading order in ��1. Following the same analysis, we
find the same asymptotic behavior for X4.

3. Oscillating integrands

The calculation of the transport of particles involves the
computation of double integrals of the type

P = �
a

+�

de−2��Q��−Q�a��F���
a



F�t�dt , �B8�

where the functions F contains an oscillating function. We
here derive the asymptotic behavior of this integral with
F�t�= f�t� cos��0��t�� and the phase given by ��t�=�1+a2

−�1+ t2. The difficulty associated with the calculation of
such an integral is the presence of a point of the stationary
phase t=0 where the integral cannot be done with an inte-
gration by part.

For a�0, the point of the stationary phase is never
reached and then the first integral can be approximated, for
�0�1, as

I�� � �
a



F�t�dt � −
�1 + 2f��

�0
sin��0���� . �B9�

Using this approximation, P can be computed with the fol-
lowing result:

P �
f�a�2�1 + a2�

4���1 + a2�2 + �0
2a2�

. �B10�

Note that the result is the same as in the perpendicular case
where the integral defining the transport of particles does not
involve any stationary point.

For a�0, the behavior of the integral I�� is affected by
the stationary point in the vicinity of =0. We can however
find an approximation as

I�� ��−
�1 + 2f��

�0
sin��0���� , if  � −

1
��0

,

I0 + c , if �� �
1

��0

,

2I0 −
�1 + 2f��

�0
sin��0���� , if  �

1
��0

.
�

�B11�

Here, I0=�� /2�0f�0� cos��0��0�−� /4� is the value given
by the stationary point and c= f�0� cos��0��0�� is obtained
by Taylor expanding I in the vicinity of =0. Figure 3 shows
the numerical computation of the integral compared to the
approximation �B11� and shows an excellent agreement. Us-
ing Eq. �B11�, we obtain P as

P �
f�a�2�1 + a2�

4���1 + a2�2 + �0
2a2�

+ 2I0
2. �B12�

The first contribution comes from the integration by part
�and as the result is odd in , the contributions from −1 /��0

−1 −0.5 0 0.5 1
−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

τ

I(
τ)

Ω
0

= 100

FIG. 3. �Color online� Graph of the function I�� with our ap-
proximation �B11�. The parameters are a=−1 and �0=100.
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and 1 /��0 cancel out�. The second contribution �of order
�0

−1� comes from the stationary point. Both contributions
have to be kept as the first one can be important if ��0a�
�1.

For a=0, the stationary point counts twice as less, so the
approximation becomes

I�� � �c , if 0 �  �
1

��0

,

I0 −
�1 + 2f��

�0
sin��0���� , if  �

1
��0

. �
�B13�

In that case, the contribution from the stationary point can-
cels out as I�0�=0. Therefore, for a=0, the only contribution

comes from the end point of the integration and is the same
as for a�0 �see Eq. �B10��.

Performing the same procedure when F�t�
= f�t� sin��0��t��, we obtain the following result:

P � −
f�a�2�1 + a2�

4���1 + a2�2 + �0
2a2�

+
f�a�2�1 + a2�

�4��1 + a2�2 + �0
2a2�

�B14�

+
�

�0
f�0�2 sin2��0��0� − �/4�� , �B15�

the second line being present only if a�0 �i.e., when the
point of the stationary phase is reached�.
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